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TECHNICAL NOTE 1906

AN ANALYTTCAL STUDY OF THE STEADY VERTICAL DESCENT IN
AUTOROTATION OF SINGLE-ROTOR HELICOPTERS

By A. A. Nikolsky and Edward Secksl
SUMMARY

A detailled analysis of steady sutorotative vertlical descent of a
helicopter is made, in which the effect of considering induced velocity
constant over the disk is examined. The induced wveloclty is first
considered constant, then veriaeble over the disk; and the results are
compared. for a typlcal helicopter. Although considering the induced
veloclity constant over the dlsk causes conslderabls error 1n the load
distribution along a blade, the revolutions per minute of the rotor and
rate of descent are found to be negliglbly affected for small angles of
blade pitch. For high pitch angles, where blade stalling becomses
important, the theoretical difference between blade load distributions
obtained by considering induced velocity constant and varlable may be
expected to be enough to cause quantitative disagreement between the
constant induced—velocity theory and experiment.

A brief study is made of the stebillty of autorotation, considering
the effect of blade stalling. At small values of blade incldence,
stabllity of the autorotation will be adequate, and blade stalling can
be neglected. As the blade incidence increases, the risk of an upgust
causing the blades to stall and the rotor to stop becomes acute.

INTRODUCTION

This report is the result of the first part of a broad program to
analyze the transient motions of a helicopter, which occur in the varilous
phases of flight following power fallure. As such, 1%t is proper that 1t
be concerned with steady-state vertical flight without power, or steady
autorotative descent.

The basls for the analysis 1s contailned in a paper by Glauert
(reference 1), although a somewhat similar approach was made by Bennett
in reference 2. There 1s no theory adequate to analyze the states of a
rotor in autorotative vertical descent, and recourse must be made to
an empirical relationship between the veloclty of descent and total flow
through the rotor disk. As more experimental evidence becomes avalleble,
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it will be possible to modify the necessary empiricisms to improve the
agreement between analysis and fact.

This work was conducted at-Princeton University under the sponsor—
ship end with ‘the financial esslstance of the National Advisory Committee
for Aeronsautics.

SYMBOLS

Physical Quantities

W gross welght, pounds
b number of blades per rotor
R blade radius, feet
r radlal distance to blade element, feet
x = r/R
c blade—section chord, feet
"MR
crldr |
0
Cq equivalent blade chord, feet- {cg = ——
R
f r2ar
0
o blade—section solidity ratio be
x 7R
bee
o rotor solidity ratilo <———)
R
e blade—-section pitch angle from zero 1lift, radlans unless
otherwise stated
0o blade pitch angle at hub
o, linear twist of blade (& = 8o + 61x)
8 disk area, square feet nRe)

o) mass density of-alr, slugs per cublc foot
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Afr—Flow Paramesters

true alrspeed of helicopter along flight path, feet
per second

vertical component of V (positive down)
rotor angular veloclty, radians per second
induced inflow velocity at rotor (always positive),

feet per second

v-v- -V UP
inflow ratio at a blade element —_— =
QR QR

resultant velocity of the alr relative to a blade
element, perpendicular to blade—span axis, feet
per second

component of U perpendicular to axis of no feathering
(positive up toward rotor)

blade—section angle of attack from zero 1ift, radians
unless otherwise stated

inflow ratico with induced veloclty assumed constant
over the disk (%
QR

average value of Up over disk (when induced velocity
is assumed constant over the disk), feet per second
(positive up)
Blade—HElement Aerodynamlc. Characteristics
section 1lift coefficient

section profile—drag coefficient

coefficients in power series for ¢ as & function

of . <?do =8y + By, + 82ar2 + 83ar3 + o .)

Cdq corrected to account for friction torque

8y corrected to account for friction torque
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increment in 8y to account for friction torque
(50" = B0 + AB0)
where

Qr = — g bQERu(Aﬁo)ng cx3dx

cq," = 80" + 81 + Sgarz + 83ar3 F e oo
dey

slope of 1lift curve for. blade, per radlan < T

maximm section lift—coeffliclent

blade station inboasrd of which blade is stalled

13t coefficient of stalled blade section

profile—drag coefficlent of stalled blade sectlion
section thrust coefficlent based on resultant

veloclty F = _____J__2<_d£
4ner? d

section thrust coefficlent based on descending

. 1 aT
velocity | f = (—)
lmrva2 dr

Rotor Aerodynamic Characteristics
rotor thrust; pounds

rotor aerodynamic torque, pound—feet

rotor friction torque, pound—feet (may include torque

to drive auxiliary mechanisms)

rotor thrust coefficlent (CT = _~2_T—_2->
npR-(QR)

rotor torque coefflclent (CQ ) :mR3(nR)2>
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F

Hl

P3

C1

€3

L

5

3

e

s

2%
8K

16K8
acrx

20po2__ 2

rotor thrust coefficient based on resultant

velocity [ F = —L
2:rp1'«’{2u2

rotor thrust coefficient based on descending
= T

veloclty | £ = ————

2n:pR2Vv2

Miscellaneous

constant in empirical relation between F

and F (l=2:tx-1—>
£ F

20r g2 _ ( 2)
ag a0932 S

1
S 2ax
-re ‘/; co

1 j‘l
Ce o

2¢
2002
g

—_ i‘. 1 x3(80' + 519 + 6292)dx

Ce
acp — = f
c3(a = 82)

(81 + 2809)dx
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c,#,c3,02,cl,co coefficlents in power series for 2—29- as a function

2¢
of A -O_—Q = Co + C3A + Cg)x,‘?‘ + 03],3 + C)-I-)"h)

METHOD OF ANALYSIS

The Relation between

ol |
H| |

It was shown by Lock in reference 3 that, for small values of
resultant axial air velocity u through a rotor disk, the vortex and
momentum ‘thsories are inapplicable. A relationship between u and the
vertlcal component of descending velocity Vy was found experimentally

and presented in terms of nondimensional coefficilents F and F by
Glauert in reference l. The relation between F and F glven by
Glauert is given in figure 1 of-this report (the solid line). The upper
branch of the curve 1is for the windmill brake state, u > 0 (in which
the rotor operates as a windmill, the average flow through the rotor being
In the direction of the free stream); the lower branch Is Ffor the vortex
ring state, u < O (in which the actual flow through the rotor is turbu—
lent, at some places being in the direction of the free stream, and at
some against. On the average, however, the flow through the rotor is
against the free stream).

In order to simplify the analytical treatmeni, and because there is
soms doubt as to the exact relatlonship between f£ and F, it 1s assumed
in thls report that the relationship 1s of the form

=2 *K (1)

M) |
= |

which is 1llustrated in figure .1l for K = 1 and 2. The upper branches
(corresponding to-the plus sign) are again for the windmill brake
state, u > 0; the lower (for the minus sign) are for the vortex ring

state, u <O.

In this report, K will usually be teken as 2, so that, in

hovering -%;= 0), -%;= 1, to agree wlth the vortex theory which is known

£ F . A -
to be reasonably accurate in its application to hovering. The effect oFf
the different assumptions for_-%;against-%: on descending velocity in

steady autorotatlon 15 presented in figure 2, for a sanmple heiicopter
(see SAMPLE CALCULATIONS) with varilous blade incidences. It 1s seen
that the differences are not large.
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Derlvation of the Equatlions
It is now assumed that the same relationship that exists between f
and F, for the rotor, exists as well bstween the corresponding cosffi-
clents f &and F for any blade section, where, however, f and F are
varigble over the disk.

Considering now any blade section, from the definitions of f and ¥,
there can be wrltten -
2
£ P
L-(& (2)
:-(®

and combining equations (1) and (2),

_ 2
2f=l+K<:%> (3)

where, in equation (3) and hereafter, the upper sign corresponds to the
upper branch of % against % (the windmill braeke state) and the lower
sign to the lower branch of % against % (the vortex ring state).

Substituting in equation (3) the definition of £, and, since only
vertical flight 1s concerned, dropping the subscript v on V,

47 -
= 2:rpxR2(V2 ¥ KUPE) (4)
From blade—element considerations,

] 253 Jp_
5 a2bcx20°R <e + xSIR> (5)

Fl&
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Combining with equatlion (4) and letting

-
p = l 2_L‘;_
1 Q a0, 0
&Ux
P2 = Bk
(6)
Dy = 16K9 f
3 ag,
U
= 2
QR
J
there results, for the two states
- _ 2
A'xe % 2pohy * P2 P3(P1 — %) =0 (7)

For the windmill brake state, UP >0, Ay > 0, and the solution
must be

Ax = -p2[1 -J1+ pa(py — x)] (8)

and 1t must-be that x < Py

Por the vortex ring state, UP < 0, Ay < 0, and the solution
must be :

Ay = Pg[l —J1 - p3(py - x)] ' (8a)

-and 1t must be that x > p;.

It 1s apparent then, that blade elements inboard of station x = P
are in the windmill brake stats where the upper branch of % against %
applies, and that blade elements outboard of station x = Py are in the
vortex ring state, where the lower branch of % against % applies. Aﬁ
station x = py, Ax =Up = 0.
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For steady autorotation, the thrust and torque equations are well

known:
1
W=T= S-ba9233 c<? + §$>x2dx
X
0
and
: A
Q=0-= g-mzRlL aclo + 3§)Lxx2dx —
cx3 50’ + 5768 + 5292>
1
cxzxx al + 2652>dx CBoXAL2dX
o _

in which the drag coefficient i1s represented by the seriles

= 2
Gd_ot = 60’ + Blccr + 82%

The solution of these equations involves the determination, by

(9)

(10)

trisl and error, of the ratio %% such that the computed distribution

of Ay (equations (8) and (82)) satisfies the torque equation.

Solution with Varlable Induced Velocity

Steps in the solution of equations (8), (9), and (10) are outlined

below:

(1) Assume a value for R’

v, or compute an approximate value

by assuming induced velocilty constant over the disk by the method

given in the following sectlon.

(2) Choose a number of stations, such as x = 0.2, 0. 4, 0.6,
0.8, and 1.0, and calculate at each station the values of Dy, Po,

and p; from equations (6).
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(3) Calculate Ay at each station, from equation (8)
where x < Py, or from equation (8a) where x > p;.

(4) Substitute the values of A, into equation (10) and
evaluate the integrals graphlcally or by Simpson's ruls.
Equation (10) must be satisfied. If it is not, a different
value of f%% should be assumed, and steps (1) through (4)
repeated until the torque is substantially zero.. Starting with
the value of 5‘% from constant induced—veloclty considerations
willl lead usually to an accurate determlnation of S%% for zero

torque in three trials. The flnal value ofL-g%- will usually be

between O and 10 percent larger than that for canstant induced
veloclity.

(5) Having found the value of g%- for zero torque, by

trial and error in step (4), substitute the appropriate values
of Ay into equation (9), and evaluate the integral graphically
or by Simpson's rule. 8Solve equation (9) for Q.

(6) From the value of g% from step (4), and Q from
step (5), solve for the descending velocity V.

S8olution with Induced Velocity Assumed Constant over the Disk

If it1s assumed that the induced veloclty is constant over the
disk, then an approximate solution of the above equations can readily
be obtalned enalyticelly. In this case Ay 18 a constant A; and the
thrust and torque equatlons can be written

¢y = 92<02 + ch) _ (11)
and )

c) = 92<c5 + ch + c7x2) (12)
where .

2Cp o2 2 /7
1 = g2 % T3 c,‘) (13)
1
cp = c}—e cox2ax (13a)
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1 -
1
c3 = z cx dx (l3b)
0
2CQ o
cy = — Q (13c)
1l
— 1
5 = = Qj cx3<50' + 8,6 + 8292>dx (134d)
0
1
Cg = acp — cl—ef cxa(al + 2826)dx (13e)
0
cq = c3(a - 62) | (13f)

In steady autorotation, the torque equals zero (ch_ = O) s 80 that
equation (12) reduces to

07).,2 +cgh +t o5 =0 (14)

Since, with induced velocity constant, 1t must be assumed that the
rotor is in the windmill brake state (A > 0), the solution must be

A = ~cg + \Jeg? — heser (1ha)

207

The followling sequence may then be set down for solving the problem
under ths assumption of constant induced velocity:

(1) Calculate the coefficients c;, Cp, C3s C)s Css Ogs
and ¢, from equations (13) through (13f)

(2) Calculate A from equation (lha)

(3) Calculate © from equation (11)
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(4) Calculate u from the definition of A (u = ASR) .

(5) Calculate F from its definition ( F=—L
21tpR2u2

(6) Calculate f from equation (1), using the plus sign
(for the windmill brake state)

(7) From the definition of T, calculate V <V = f—T—E:
2xpR<f

Stability of Autorotation

Blade element.— Considering, for the moment, the stability of a

sollitary blade element In autorotative vertical descent, the autorotation
will be sald to be stable, if, following a disturbance from the equilib~
rium.condition of torque equal toc zero, the blade element tends to
return to the same equilibrium state. If the disturbance made the torque
decelerating, say, then

(1) @ would decrease
(2) 4T and v would decrease
(3) v would increase
(4) Hence Ay would increase

If the slope of d4Q agalnst Ay, éé%ﬂl’ were positive (toraque becoming
X

more autorotative for an increase in Ay), then the equilibrium (dQ = 0)
would tend to be restored, and the autorotation would be stable.

Conversely, 1f ,§§%32.< 0, the autorotation would be unstable.

X
Rotor.— The criterion for the stebility of the rotor as a whole,
by extenslion of that for the blade element, l1s

dx
dx > O

5 P
Although the evaluation of the above integral 1s prohlbitively

difficult considering variable induced velocity, under the assumption
of constant induced velocity over the disk, it reduces to

R

—>0
oM
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It may be noted that for A = 0, the torgue would be negative
(decelerating) for any pitch @, so that, at the first trim point (Q = 0)
on a curve of @ against A, §Q must be positive. Therefore, for infin—

oA
itesimal disturbances from thls trim condlition, the autorotation would
be stable. As A Increases, however, beyond the first trim point, the
angle of attack of the blades lncreases, untll the blades stall, and the
curve of Q agalinst A drops sharply through a second trim point

where §x-< 0, and where the autorotation would be unstable.

Above a critical value of blade Incidence the curve for Q against A
does not Intersect the @ = 0 axls. Hence In this case there 1s no trim
point, and no autorotation is possible.

Below the criltical blade angle, where both trim polnts exist, auto—
rotation can only be steady at the flrst, stable trim point. The slightest
disturbance from the unstable trim state would elther cause the rotor to
revert to the flrst, stable trim state, or stop autorotating completely.

If the momentary increase in XA, due to an upgust hitting a rotor
in stable autorotatlon at the first trim point, were sufficlent to
increase A beyond the second trim point, the autorotation would stop.
If the increase In A were less than the difference in the two trim
points, then the autorotation would return to the steady stable state
at the first trim point.

In order to Investigate the critical blade angle above which auto—
rotation is impossible, and, for those blade angles where steady auto—
rotation can exist, to predict the value of an upgust which would cause
the autorotation to stop, 1t is necessary to include the effect of blade
stalling in the expressions for drag and 1ift coefficlents as functions
of angle of attack. For this purpose, it 1s assumed that, below the
stall, the drag coefficient 1s given by a cublc In angle of attack,
instead of the usual quadratic, and that, &bove the stall, the drag and
1iPt coefficients are constant at values denoted by Cag and Clg?

respectively. Thus, below the stall,
cay’ = 80" + iy + 8o + B3 (15)

The blade station at which the stall begins is denoted xg, and is
given by

ey = & 8 + = (16)
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or
A

°lnax _ ' (162)
B _

JCS-"'-

For blades of constant chord, the torgue equation 1s

2 l.o

c

9 - an?(g +-l)dx +
[+ p

Xg

Xs

c zsuedx -
(0]

1.0

x3[50' + 81<9 + ;—) + 82<9 + %)2 + 83<e + ;.)3]53( -
Xg _ -

Xg

8x3dx (17)

As written above, the equation applies for O0< xXg < 1.0, which
18 the range of interest here. For @ = Constant (no twist), integrating
equation (17) and substituting from equation (16a),

2¢ _ .

-
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where
cy = 1 - [(so' - ss> + 8,0 + 8567 + 5393] +
Clmax
u( = — @
1 _ 2]
5} o8 —
o 3 [( 1+ ch) +-< 8o a)e + 38367 | +
max
3( . 6
1 53
o 5 [(82 - a.) + 3636] + _Ez—————
(e _ (Ctmss )
a a
Cp = %‘-(a ~ 8y — 3539)

c, = -_f}- [—51 + (a - 252)9 - 35392]

=1 2

0
The velues of A for Q = O, and the slope, 5%, at those trim

2C
pointe can best be investlgated by calculating and plotting ~Eg as a

function of A for various values of @.
SAMPLE CALCULATIONS

The physical properties for the helicopter chosen for the sample
calculations are as follows:

W

i

2700 pounds

D=3

15
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R = 20 feet
¢ = 1.25 feet (constant) = cg
a = 5.6 per radian

o, = 0-0087 — 0.0216ay + 0.40x,?

Variable Induced Velocity

For illustrative purposes, a linear twist of —6° is chosen
with 6g, 7sg = 4°, so that, in degrees,

6 = 8.5 S— 6x
or, 1In radians,
v
A vdlue of- (—) of 0.0750 18 assumed.
)N 75

Performing steps (1) through (3) in the section entitled "Solution

with Variable Induced Veloclty," the varlation of Ay with x is
computed. For example, for x = 0.6, by equatioms (6),

Py = 0.788
by = 0.0209
p3 = 8.20

Since x < p;, using equation (8),
XI = 0001.2)-’-

Graphical integration of equation (10), using the variation of

Ax

computed, glves a net area for Q very nearly zero. Therefore the value

of (l is sufficiently accurate.
(9124 Q=0

Grephical integration of equation (9) gives

T

—_— = 0.0385
£ van®g3
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whence Q = 20.9 radians per second. Then
Y = (%)nn = 31.3 feet per second

At blade station x = 0.6, the blade angle of attack is

A
ap = 8 + = = 8.5 — 6(0.6) +°—6zl?l"-57.3 = 6.1°

Constant Induced Velocity

For the same pitch and linear twist, using equations (13)
through (13f),

c; = 13.50 c5 = -0.00226
cy = 0.0233 cg = 0.1190
oy = 0.50 Cop = 2.60

From equation (1lia),
A = 0.0145

From equation (11),

1l = 21.0 radians per secand
u = A0R= 6.09 feet per second
F o = 12,2

2pr¥

From equation (1), using the plus sign and X =2,

2.16

vV = ’ T = 31.2 feet per second
2x T

)|
"

whence
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At-blade station x = 0.6, the angle of attack is

0.0145 ~
T -6
0.6

o

03_

© ap =8 +X=8.5-6(0.6) +57.3

S8tability of Autorotation

For this calculation the cublic drag polar is assumed,

oq ' = 0.0087 + 0.06000; — 1.28a2 + 8.0u,3

corresponding to

8y = 0.0087
81 = 0.0600
8y = —1.28
83 = 8.00

Values pertinent to stalling are taken to be

= 1,2
cy 1.20
cZs = 0.60

Values of-the coefflcients Cy.» 03, Co, Cy, and- Cy are computed
2

C
for various values of @, and the variation of —EE with A 1s computed.

Although these calculations are not-given in detail, the resglts are
presented in figure 3. The dashed lines are the curves of —EQ against A

computed by equation (12) in which blade stalling is neglected. They
are shown to Indicate the effects of blade stalling, and to indicatethe
ranges of A &and @ vwhere blade stallihg may be neglected.
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DISCUSSION OF CALCULATIONS

Comparison of Varlable and Constant Induced-Velocity Theories

Calculations for rate of descent V and rotor speed Q for the
sample helicopter (see SAMPLE CALCULATIONS) have been carried out for
different amounts of blade twist, by both constant and varisble induced—
velocity methods. The results, shown in figure 4, indicate that, for
performance calculations, the results by the two methods are practically
indistinguishable.

The variations of angle of attack along the blade, as computed for
the above cases by the two methods, are plotted in figure 5. Although
the agreement 1s good for negatlve twist, 1t 1s clear that the theoretical
blade load distribution is, in general, conslderably affected by the
agsumption of constant induced veloclty.

Stabllity of Autorotation

2
The varlation of —EQ against ) for various values of 6, for the
sample helicopter, i1s given In figure 3. The blade drag polar used for
these calculations is compared with the quadratic expression (used in
the other calculations) in figure 6. It will be noted that the two are
essentially identical at low lift coefficients, but that at higher 11ft
coefficients & more reallstic increase in drag 1s given by the cubic
expression used. Also, the stall is caonsidered.

Consideration of figure 3 shows that for small blade incidence,
the second, unstable trim point 1s far enough from the steble one that
even a strong upgust would not cause A to increase beyond 1t. At
high values of incidence, however, the two trim points are so close
together that a rotor in stable autorotation at the first point might
becoms unsteble, and stop autorotation, i1f hit by even a weak upgust,
with 1its attendant momentary increase of A.

There 1s, of course, & value of @ (about 8.8°, from the fig.)
above which there is no trim point, and therefore autorotation Is not
possible. It is worth noting that using the quadratic drag polar, in
which stall is neglected, not only results in failure to predict the
second, unstable trim point and its attendant danger at high values
of @, but would also indicate that autorotation would be possible at
any value of 8. It is apparent, then, that the blade stall cannot be

neglected at high incidence.

In figure 7, values of A <for the first trim points are plotted
agalnst 6, as read from the curves of flgure 3. For comparison, values
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of A computed by the method given in the section entitled "Solution
with Induced Velocity Assumed Constant over the Disk,” using the guad-—
ratic drag polar and neglecting the stall, are also shown. For small
values of 6, the difference is very slight 1ndicat1ng that blade
stalling can safely be neglected for performance calculatioms at low
incidence.

It should be noted that the results obtained from the study of-
stability of autorotation should be considered purely gqualitative. The
most important reason 1s that the constant induced-velocity theory used
fails to predict accurately the angle—of-attack distribution along the
blade, and hence cannot accurately account for the all—important distri—
bution of stall at high angles of incldence where the stabllity 1s
questlonable. To be confident of guentltative results it would first be

necessary, therefore, to predic¢t accurately the actual induced—velocity
distributlion. It would also be necessary to represent accurately the
drag curve at angles above the stall, and to account for Reynolds number
effect on drag and maximum 1ift at various blade stetlons.

CONCLUSIONS

Although they are somewhat limited by the assumptions used in the
theory on which they are based, the following conclusions seem Justified:

1. Rate of descent and rotor speed are not critically affected by
different assumptions for rotor thrust coefficient based on descending
velocity f ageinst rotor thrust coefficlent based on resultant

velocity F 1in the range of canditions encountered in steady autorotative

descents--

2. For the computation of rate of descent and rotor speed, constant
Induced—velocity theory may be used at low incldence where stalling may
be neglected. At high incidences, blade stalling must be accounted for
in order to obtain even qualitative agreement between theory and practice.
For quantitative-agreement in this case, it would probably be necessary
to use a variable induced—veloclty theory.

3. At high values of incldence, although the autorotation msy be
stable for Infinitesimal disturbances, a finite disturbance such as an
upgust might well stall enough of the blades to put-the rotor in an

unstable reglime where it would cease autorotating. There 1is 1little danger

of this, at least for aerodynamically clean blades, at—low incldence.

4. For the sample design studied, the constant induced—velocity
theory, accounting for blade stalling, indicates a critical value of
blade incidence of about 8.8°, above which steady autorotstion would not

be possible. =

Princeton University
Princeton, N. J., May 4, 1948
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